Succinct Proofs of Primality for the Factors of Some Fermat Numbers

By Richard P. Brent

Abstract. We give short and easily verified proofs of primality for the factors of the Fermat numbers F_5 , F_6 , F_7 and F_8 .

1. Introduction. The Fermat numbers $F_k = 2^{2^k} + 1$ are prime for $1 \le k \le 4$ and have exactly two prime factors for $5 \le k \le 8$. Here we give 'succinct' [7] and easily verified proofs of primality for the prime factors of F_k , $5 \le k \le 8$. We assume that the primality of integers smaller than 10^7 is easy to check [5].

To prove that an integer p is prime, it is sufficient to find an integer x such that

$$x^{p-1} = 1 \pmod{p}$$

and, for all prime divisors q of p - 1,

$$x^{(p-1)/q} \neq 1 \pmod{p}.$$

Then x is a primitive root (mod p). The difficulty in finding such proofs lies in factorizing p - 1; see e.g. [4].

2. Proofs of Primality. In Table 1 we give the least positive primitive root $(\mod p_k)$ and the complete factorization of $p_k - 1$ for the primes p_k listed in Table 2. Using Table 1, it is easy to verify that p_{20}, \ldots, p_1 are in fact prime. Since

$$F_5 = 641 \cdot 6700417$$
 (Euler),
 $F_6 = 274177 \cdot p_1$ (Landry),
 $F_7 = p_2 \cdot p_3$ (Morrison and Brillhart [6]),

and

$$F_8 = p_8 \cdot p_9$$
 (Brent and Pollard [3]),

this completes the required primality proofs.

© 1982 American Mathematical Society 0025-5718/82/0000-0487/\$01.75

Received January 15, 1981.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 10-04, 10A25, 10A40; Secondary 10A05, 10A10 65C05, 68-04.

Key words and phrases. Factorization, Fermat numbers, primality testing, primitive root, Monte Carlc methods.

k	primitive root (mod p_k)	factorization of $p_k - 1$
1	3	$2^8 \cdot 5 \cdot 47 \cdot 373 \cdot 2998279$
2	3	$2^9 \cdot p_4$
3	21	$2^9 \cdot 3^5 \cdot 5 \cdot 12497 \cdot p_6$
4	2	$2 \cdot 7 \cdot 449 \cdot p_5$
5	6	$2 \cdot 3^3 \cdot 181 \cdot 1896229$
6	2	$2 \cdot 3 \cdot 2203 \cdot p_7$
7	3	2 ³ · 6939437
8	3	$2^{11} \cdot 157 \cdot p_{10}$
9	43	$2^{11} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot p_{11} \cdot p_{12}$
10	6	$2^6 \cdot 5 \cdot 719 \cdot 16747$
11	17	2 · 1789 · 10079 · 876769
12	11	$2^4 \cdot 3 \cdot 8861 \cdot p_{13} \cdot p_{14} \cdot p_{15}$
13	2	$2^2 \cdot 7 \cdot 223 \cdot 1699$
14	2	$2 \cdot 3^2 \cdot 16879 \cdot p_{16}$
15	5	$2 \cdot 20939 \cdot p_{18}$
16	11	$2 \cdot p_{17}$
17	2	2 · 13 · 1604753
18	5	$2^2 \cdot 3^2 \cdot p_{19}$
19	3	$2^4 \cdot 5 \cdot 7 \cdot p_{20}$
20	2	$2 \cdot 23 \cdot 29^2 \cdot 283$

 TABLE 1

 Primitive roots and factorizations

		TABLE 2		
Primes	related to	factors of	f Fermat	numbers

k	p_k
1	67280421310721
2	59649589127497217
3	5704689200685129054721
4	116503103764643
5	18533742247
6	733803839347
7	55515497
8	1238926361552897
9	9346163971535797776916355819960689658405123754163818858028032
10	3853149761
11	31618624099079
12	1057372046781162536274034354686893329625329
13	10608557
14	25353082741699
15	9243081088796207
16	83447159
17	41723579
18	220714482277
19	6130957841
20	10948139

3. Comments. The larger factor p_9 of F_8 was first proved to be prime by H. C. Williams, using the method of [8]. At that time the complete factorization of $p_9 - 1$ was not known.

To obtain Table 1 we had to factorize several large integers. All nontrivial factorizations given in Table 1 were obtained using the Monte Carlo method of [2], implemented with the MP package [1]. The most difficult factorizations were those of the 56-digit integer $p_{11}p_{12}$ and the 30-digit integer $p_{14}p_{15}$. The numbers of arithmetic operations required for these factorizations were approximately as predicted by the probabilistic analysis of [2].

Acknowledgement. We thank the Australian National University for the provision of computer time.

Department of Computer Science Australian National University Canberra, A.C.T. 2600, Australia

1. R. P. BRENT, "Algorithm 524: MP, A Fortran multiple-precision arithmetic package," ACM Trans. Math. Software, v. 4, 1978, pp. 71-81.

2. R. P. BRENT, "An improved Monte Carlo factorization algorithm," BIT, v. 20, 1980, pp. 176-184.

3. R. P. BRENT & J. M. POLLARD, "Factorization of the eighth Fermat number," Math. Comp., v. 36, 1981, pp. 627-630.

4. D. E. KNUTH, The Art of Computer Programming, Vol. 2, Addison-Wesley, Menlo Park, 1969, Sec. 4.5.4.

5. D. N. LEHMER, List of Prime Numbers from 1 to 10,006,721, Hafner, New York, 1956.

6. M. A. MORRISON & J. BRILLHART, "A method of factoring and the factorization of $F_{7,}$ " Math. Comp., v. 29, 1975, pp. 183–208.

7. V. R. PRATT, "Every prime has a succinct certificate," SIAM J. Comput., v. 4, 1975, pp. 214-220.

8. H. C. WILLIAMS & J. S. JUDD, "Some algorithms for prime testing using generalized Lehmer functions," *Math. Comp.*, v. 30, 1976, pp. 867–886.