Succinct Proofs of Primality for the Factors of Some Fermat Numbers

By Richard P. Brent

Abstract

We give short and easily verified proofs of primality for the factors of the Fermat numbers F_{5}, F_{6}, F_{7} and F_{8}.

1. Introduction. The Fermat numbers $F_{k}=2^{2^{k}}+1$ are prime for $1 \leqslant k \leqslant 4$ and have exactly two prime factors for $5 \leqslant k \leqslant 8$. Here we give 'succinct' [7] and easily verified proofs of primality for the prime factors of $F_{k}, 5 \leqslant k \leqslant 8$. We assume that the primality of integers smaller than 10^{7} is easy to check [5].

To prove that an integer p is prime, it is sufficient to find an integer x such that

$$
x^{p-1}=1 \quad(\bmod p)
$$

and, for all prime divisors q of $p-1$,

$$
x^{(p-1) / q} \neq 1 \quad(\bmod p) .
$$

Then x is a primitive root $(\bmod p)$. The difficulty in finding such proofs lies in factorizing $p-1$; see e.g. [4].
2. Proofs of Primality. In Table 1 we give the least positive primitive root $\left(\bmod p_{k}\right)$ and the complete factorization of $p_{k}-1$ for the primes p_{k} listed in Table 2. Using Table 1 , it is easy to verify that p_{20}, \ldots, p_{1} are in fact prime. Since

$$
\begin{array}{ll}
F_{5}=641 \cdot 6700417 & (\text { Euler) } \\
F_{6}=274177 \cdot p_{1} & \text { (Landry), } \\
F_{7}=p_{2} \cdot p_{3} & \\
\text { (Morrison and Brillhart }[6]),
\end{array}
$$

and

$$
F_{8}=p_{8} \cdot p_{9} \quad(\text { Brent and Pollard }[3])
$$

this completes the required primality proofs.

[^0]Table 1
Primitive roots and factorizations

k	primitive root $\left(\bmod p_{k}\right)$	factorization of $p_{k}-1$
1	3	$2^{8} \cdot 5 \cdot 47 \cdot 373 \cdot 2998279$
2	3	$2^{9} \cdot p_{4}$
3	21	$2^{9} \cdot 3^{5} \cdot 5 \cdot 12497 \cdot p_{6}$
4	2	$2 \cdot 7 \cdot 449 \cdot p_{5}$
5	6	$2 \cdot 3^{3} \cdot 181 \cdot 1896229$
6	2	$2 \cdot 3 \cdot 2203 \cdot p_{7}$
7	3	$2^{3} \cdot 6939437$
8	3	$2^{11} \cdot 157 \cdot p_{10}$
9	43	$2^{11} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot p_{11} \cdot p_{12}$
10	6	$2^{6} \cdot 5 \cdot 719 \cdot 16747$
11	17	$2 \cdot 1789 \cdot 10079 \cdot 876769$
12	11	$2^{4} \cdot 3 \cdot 8861 \cdot p_{13} \cdot p_{14} \cdot p_{15}$
13	2	$2^{2} \cdot 7 \cdot 223 \cdot 1699$
14	2	$2 \cdot 3^{2} \cdot 16879 \cdot p_{16}$
15	5	$2 \cdot 20939 \cdot p_{18}$
16	11	$2 \cdot p_{17}$
17	2	$2 \cdot 13 \cdot 1604753$
18	5	$2^{2} \cdot 3^{2} \cdot p_{19}$
19	3	$2^{4} \cdot 5 \cdot 7 \cdot p_{20}$
20	2	$2 \cdot 23 \cdot 29^{2} \cdot 283$

Table 2
Primes related to factors of Fermat numbers

k		p_{k}
1	67280421310721	
2	59649589127497217	
3	5704689200685129054721	
4	116503103764643	
5	18533742247	
6	733803839347	
7	55515497	
8	1238926361552897	
9	93461639715357977769163558199606896584051237541638188580280321	
10	3853149761	
11	31618624099079	
12	1057372046781162536274034354686893329625329	
13	10608557	
14	25353082741699	
15	9243081088796207	
16	83447159	
17	41723579	
18	220714482277	
19	6130957841	
20	10948139	

3. Comments. The larger factor p_{9} of F_{8} was first proved to be prime by H. C. Williams, using the method of [8]. At that time the complete factorization of $p_{9}-1$ was not known.

To obtain Table 1 we had to factorize several large integers. All nontrivial factorizations given in Table 1 were obtained using the Monte Carlo method of [2], implemented with the MP package [1]. The most difficult factorizations were those of the 56 -digit integer $p_{11} p_{12}$ and the 30 -digit integer $p_{14} p_{15}$. The numbers of arithmetic operations required for these factorizations were approximately as predicted by the probabilistic analysis of [2].

Acknowledgement. We thank the Australian National University for the provision of computer time.

Department of Computer Science
Australian National University
Canberra, A.C.T. 2600, Australia

1. R. P. Brent, "Algorithm 524: MP, A Fortran multiple-precision arithmetic package," ACM Trans. Math. Software, v. 4, 1978, pp. 71-81.
2. R. P. Brent, "An improved Monte Carlo factorization algorithm," BIT, v. 20, 1980, pp. 176-184.
3. R. P. Brent \& J. M. Pollard, "Factorization of the eighth Fermat number," Math. Comp., v. 36, 1981, pp. 627-630.
4. D. E. Knuth, The Art of Computer Programming, Vol. 2, Addison-Wesley, Menlo Park, 1969, Sec. 4.5.4.
5. D. N. Lehmer, List of Prime Numbers from 1 to 10,006,721, Hafner, New York, 1956.
6. M. A. Morrison \& J. Brillhart, "A method of factoring and the factorization of F_{7}," Math. Comp., v. 29, 1975, pp. 183-208.
\rightarrow V. R. Pratt, "Every prime has a succinct certificate," SIAM J. Comput., v. 4, 1975, pp. 214-220.
7. H. C. Williams \& J. S. Judd, "Some algorithms for prime testing using generalized Lehmer functions," Math. Comp., v. 30, 1976, pp. 867-886.

[^0]: Received January 15, 1981.
 1980 Mathematics Subject Classification. Primary 10-04, 10A25, 10A40; Secondary 10A05, 10A10 65C05, 68-04.

 Key words and phrases. Factorization, Fermat numbers, primality testing, primitive root, Monte Cark methods.

